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Abstract: Using diffusion MRI, a number of studies have investigated the properties of whole-brain
white matter (WM) networks with differing network construction methods (node/edge definition).
However, how the construction methods affect individual differences of WM networks and, particu-
larly, if distinct methods can provide convergent or divergent patterns of individual differences
remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain
WM networks in a healthy young adult population (57 subjects), which involves two node defini-
tions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-
density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted).
For these WM networks, individual differences were systematically analyzed in three network
aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) net-
work global and local efficiencies. Intriguingly, we found that some of the network construction
methods converged in terms of individual difference patterns, but diverged with other methods.
Furthermore, the convergence/divergence between methods differed among network properties that
were adopted to assess individual differences. Particularly, high-resolution WM networks with differ-
ing edge definitions showed convergent individual differences in the spatial pattern of both WM
connections and nodal efficiency. For the network global and local efficiencies, low-resolution and
high-resolution WM networks for most edge definitions consistently exhibited a highly convergent
pattern in individual differences. Finally, the test–retest analysis revealed a decent temporal reprodu-
cibility for the patterns of between-method convergence/divergence. Together, the results of the
present study demonstrated a measure-dependent effect of network construction methods on the
individual difference of WM network properties. Hum Brain Mapp 36:1995–2013, 2015. VC 2015 Wiley

Periodicals, Inc.
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INTRODUCTION

The human brain is a complex network with densely con-
nected neural units in both structure and function [Sporns
et al., 2005]. Advances in diffusion MRI techniques have
made it possible to virtually reconstruct white matter (WM)
tracts, which further allows the modeling of the human
brain as a complex network/graph in vivo [Bullmore and
Sporns, 2009; Le Bihan, 2003]. Graph theoretical approaches
can then be applied to characterize topological architectures
of whole-brain WM networks [Rubinov and Sporns, 2010].
Using these techniques, a number of studies have revealed
important topological properties for human brain WM net-
works, such as a small-world organizational principle
[Gong et al., 2009a; Iturria-Medina et al., 2007], a set of
highly connected hubs and highway connections [Gong
et al., 2009a; Hagmann et al., 2008; Li et al., 2013], a modu-
lar structure [Hagmann et al., 2008; Hagmann et al., 2010;
Yap et al., 2011], and a rich-club attribute [van den Heuvel
and Sporns, 2011; van den Heuvel et al., 2012, 2013].

Intriguingly, substantial individual differences (i.e., differ-
ences between individuals) have been observed in WM net-
work properties, which may underlie intersubject variability
in human cognitions and behaviors. For example, the topol-
ogy of whole-brain WM networks was shown to be signifi-
cantly related to IQ scores and specific cognitive abilities
across individuals [Li et al., 2009; Wen et al., 2011]. In addi-
tion, network variations can also be introduced by individ-
ual differences in age and sex [Gong et al., 2009b; Hagmann
et al., 2010; Yan et al., 2011; Yap et al., 2011]. More impor-
tantly, specific topological properties of WM networks have
shown significant changes in patients of brain diseases, such
as stroke [Crofts et al., 2011], schizophrenia [van den Heuvel
et al., 2010; Zalesky et al., 2011], Alzheimer’s disease [Lo
et al., 2010], multiple sclerosis [Shu et al., 2011], remitted
geriatric depression [Bai et al., 2012], mild cognitive impair-
ment [Shu et al., 2012], and attention deficit/hyperactivity
disorder [Cao et al., 2013], which implies a potential role of
the WM network topology as a biomarker for brain diseases
[for a review, see Griffa et al., 2013].

While a number of studies have investigated WM net-
works using diffusion MRI, the construction method for WM
networks differs substantially across studies. Specifically, the
procedure of network construction usually involves two key
issues: node and edge definition. For a WM network, nodes
are typically defined as a gray matter (GM) area, and edges
linking nodes are determined by diffusion MRI tractography.
To date, a single choice for the node and edge definition
remains elusive [Fornito et al., 2013]. For instance, the entire
GM can be parcellated into either �100 (low-resolution) or

�1,000 units (high-resolution), each of which represent a net-
work node [de Reus and van den Heuvel, 2013]. Both deter-
ministic and probabilistic tractography (PT) have been used
to define edges, and multiple weighting strategies for edges
have been proposed [Gong et al., 2009a, 2009b; Hagmann
et al., 2008]. Given the differences in network construction
methods, the results of WM networks become less compara-
ble between studies, and some discrepant findings may be
attributed to the methodological differences.

Recently, a few studies have exclusively assessed the
effects of network construction methods (i.e., node/edge def-
inition) on specific WM network properties (e.g., network
efficiency, small-worldness, and hub distribution), and sub-
stantial influences of the construction methods were
observed [Bassett et al., 2011; Bastiani et al., 2012; Buchanan
et al., 2014; Cammoun et al., 2012; Cheng et al., 2012a; Cheng
et al., 2012b; Li et al., 2012; Zalesky et al., 2010]. However,
these studies mainly focused on the method effects on the
network properties for the same subjects. To date, how WM
network construction methods affect individual differences
of topological properties, and particularly if distinct construc-
tion methods can provide convergent or divergent patterns
of individual difference, remains largely unknown. The indi-
vidual differences in network properties are of great interests
because these differences are the key issue in studying WM
networks in a cross-sectional manner, including group com-
parison, correlational analysis, and so forth. Therefore, a sys-
tematic evaluation of network construction methods in terms
of individual differences is indispensable but still lacking.
This evaluation can provide insightful implications for result
interpretation across WM network studies.

In this study, we aim to exclusively assess the influence
of different network construction methods on individual
differences of WM network properties. Specifically, we
sought to determine if different network construction
methods would provide convergent or divergent individ-
ual differences. To address this issue, we applied 10 fre-
quently used network construction methods across a
healthy young adult population (57 subjects), and three
aspects of WM networks were studied to assess individual
differences: (1) a spatial pattern of WM connections, (2) a
spatial pattern of nodal efficiency, and (3) network global
efficiency and local efficiency.

MATERIALS AND METHODS

Participants

Data included in this study are a subset of the
Connectivity-based Brain Imaging Research Database
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(C-BIRD) at Beijing Normal University (BNU). (http://
fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html).
Fifty-seven healthy young adults (female/male: 27/30;
age: 23.1962.13 years) were included in this study. Each
subject was scanned twice with a 6-week interval. All par-
ticipants are right-handed and have no history of neuro-
logical or psychiatric disorders. Written informed consent
was obtained from each participant. The protocol was
approved by the Institutional Review Board (IRB) of the
State Key Laboratory of Cognitive Neuroscience and
Learning at Beijing Normal University.

MRI Data Acquisition

All MRI scans were performed on a 3T Siemens Tim
Trio MRI scanner at the Imaging Center for Brain
Research, Beijing Normal University. The T1-weighted
images were acquired using a magnetization prepared
rapid gradient echo sequence, and the imaging parameters
were as follows: repetition time (TR) 5 2,530 ms; echo time
(TE) 5 3.39 ms; inversion time 5 1,100 ms; slice
thickness 5 1.33 mm; flip angle 5 7�; no interslice gap; 144
sagittal slices covering the whole brain; matrix size 5 256
3 256; field of view (FOV) 5 256 3 256 mm2. For the
diffusion-weighted imaging (DWI) scans, a single-shot
twice-refocused spin-echo diffusion echo-planar imaging
(EPI) sequence was applied with the following parameters:
TR 5 8,000 ms; TE 5 89 ms; 30 optimal diffusion-weighted
directions with a b-value of 1,000 s/mm2 and one image
with a b-value of 0 s/mm2; data matrix 5 128 3 128;
FOV 5 2823 282 mm2; slice thickness 5 2.2 mm; 62 axial
slices without interslice gap; voxel size 5 2.2 3 2.2 3

2.2 mm3; number of average 5 2.

WM Network Construction

Using a pipeline tool of diffusion MRI (i.e., PANDA)
[Cui et al., 2013], we first preprocessed all DWI images
using typical methods, for example, brain extraction, cor-
rection for eddy-current distortion and simple head-
motion, correction for b-matrix [Leemans and Jones, 2009],
and computation for diffusion tensor and fractional anisot-
ropy. The T1-weighted image was segmented using the
SPM8 package (http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/spm8/), yielding a WM mask in the T1 native space
for each subject. The WM mask was further transformed
into the diffusion native space for each subject, using the
coregistration between the T1 and fractional anisotropy
(FA) image. The resultant WM mask was applied as a con-
straint for subsequent tractography.

Two basic elements need to be determined for a whole-
brain network: nodes and edges. Here, 10 types of WM
networks with distinct node/edge definitions were con-
structed for each subject. The construction flowchart is
illustrated in Figure 1, using in-house BrainNet Viewer

package (http://www.nitrc.org/projects/bnv/) [Xia et al.,
2013]. Defining details are described as follows.

Network Node Definitions

For a brain network at the macroscale, the entire GM
was typically parcellated into a number of regions of inter-
est (ROIs), each representing a network node. Here, we
adopted two frequently used schemes: (1) AAL parcella-
tion at low-resolution (L-90, in total 90 nodes/regions after
excluding the cerebellum) [Tzourio-Mazoyer et al., 2002];
(2) small-ROI parcellation at high-resolution (H-1024, in
total 1,024 nodes/ROIs after excluding the cerebellum).
For the high-resolution, the entire AAL template after
excluding the cerebellum was parcellated uniformly into
1,024 small ROIs, using the algorithms developed by
Zalesky et al. [2010]. The two parcellating atlases were
originally defined in the standard Montreal Neurological
Institute (MNI) space and were then transformed into the
diffusion native space for each subject, as proposed previ-
ously [Gong et al., 2009a]. Briefly, the individual FA
images were first coregistered to the T1-weighted images.
The T1-weighted image was then nonlinearly normalized
to the ICBM-152 template in MNI space using FMRIB’s
Non-linear Image Registration Tool (FNIRT, FSL, http://
www.fmrib.ox.ac.uk/fsl/). Finally, the inverse transforma-
tions were applied to the two atlases (i.e., L-90 and H-1024
atlas) in the MNI space, resulting in native-space GM par-
celletions for each subject. The transforming procedures
were also implemented by using PANDA.

Network Edge Definitions

Diffusion MRI tractography is required to determine if
two GM nodes are anatomically connected. In previous
WM network studies, both deterministic tractography (DT)
and PT have been applied to infer between-node connec-
tions [Gong et al., 2009a; Gong et al., 2009b; Hagmann
et al., 2008]. Particularly, a WM network can be either
binary or weighted, and diverse weighting strategies have
been used for a weighted WM network [Meskaldji et al.,
2013]. Using either DT or PT, we here adopted five
weighting strategies to define edges within the WM net-
works, which have been frequently used in previous
studies.

DT-based edge definition. Here, DT was based on the
fiber assignment continuous tracking algorithm with a
tracking step size of 0.5 mm, which was applied to recon-
struct whole-brain tracts for each subject [Mori et al.,
1999]. The tracking procedure was seeded from the center
of each voxel within the WM mask, and was terminated if
the turning angle was greater than 45� or the fiber entered
a voxel out of the WM mask. All procedures were carried
out using the Diffusion toolkit (http://trackvis.org) [Wang
et al., 2007]. For each node pair, the linking fibers were
then filtered out if the two terminal points are located in
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Figure 1.

The schematic construction for the 10 WM networks in this

study. (A) The outputs from the deterministic tractography. (B)

The two gray matter parcellation schemes: L-90 and H-1024.

Each patch with a specific color represents a node in WM net-

works. (C) The outputs from the probabilistic tractography.

Both deterministic and probabilistic tractography were applied

to infer connections between every two nodes within WM net-

works. (D) The example network matrices for the 10 construc-

tion methods. Eight networks are based on the deterministic

tractography, and the other two are from the probabilistic trac-

tography. (E) The 3D rendering for the 10 WM networks. B-N,

binary network; FA-N, FA weighted network; FD-N, fiber-den-

sity weighted network; LFD-N, length-corrected fiber-density

network; CP-N, connectivity-probability weighted network. (L)

and (H) denote networks at low-resolution and high-resolution,

respectively. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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the two node regions, respectively. Based on the linking
fibers between every two nodes, four types of edge weight
were defined as follows.

Edge Definition 1: Binary network (B-N). The weight only
indicates the existence/absence of an edge between two
nodes. Specifically, the edge weight was set to 1 if the
fiber number was nonzero. Otherwise, it was set to 0
[Gong et al., 2009a].

Edge Definition 2: FA weighted network (FA-N). The
edge weight is defined as the mean FA values of voxels
passed by the linking fibers [Li et al., 2009; Wen et al.,
2011].

Edge Definition 3: Fiber-Density weighted network (FD-
N). The edge weight is defined as the number of linking
fibers after correcting for the nodal size Mi;j ¼ 23FN

ni1nj
, where

ni and nj denote the number of voxels in regions i and j,
respectively, and FN denotes the fiber number linking
region i and region j [Cheng et al., 2012a]. The nodal size
was corrected because a larger node/region is more likely
to be touched by fibers in nature.

Edge Definition 4: Length-corrected Fiber-Density
weighted network (LFD-N). The weight is defined as the
fiber density after additionally controlling for the fiber
length Mi;j ¼ 23FN

ðni1njÞ3FLij
, where FLij denotes the average

length of fibers linking region i and j [Hagmann et al.,
2008; van den Heuvel and Sporns, 2011].

PT-based edge definition. The PT was based on the algo-
rithm proposed by Behrens et al. [2003, 2007], which has
been implemented in FSL and used to construct WM net-
works [Gong et al., 2009b; Li et al., 2012]. Specifically,
Markov Chain Monte Carlo sampling was used to estimate
the parameters of the orientation distribution at each voxel
with a Bayesian model with two-fiber orientations
[Behrens et al., 2003, 2007]. Each node region was selected
as a seed region, and 5,000 fibers were sampled for each
voxel within the region. For each sampled fiber, the track-
ing step size was set to be 0.5 mm. The edge weight based
on the PT was defined as follows.

Edge Definition 5: Connectivity-Probability weighted net-
work (CP-N). The connectivity probability from the seed
region to the other target region was first computed as the
number of fibers passing through the given target region
divided by the total number of tracts sampled from the
seed region. Mi;j ¼ FN

n35000, where FN is the number of fibers
passing through the target region j; n is the voxel number
of the seed region i. Notably, the probability from i to j is
not necessarily equivalent to the one from j to i because of
the tractography dependence on the seeding location. The
unidirectional edge weight was, therefore, defined as the
average of these two probabilities [Cao et al., 2013; Gong
et al., 2009b; Huang et al., 2013].

Taken together, two node definitions and five edge defi-
nitions were adopted in this study, which resulted in 10

separate WM networks for each subject. Each type of WM
network can be represented by a symmetric matrix, in
which each row and column represents a node and each
element represents an edge as defined.

Network Thresholding

Due to data noise and algorithm errors, the raw individ-
ual networks are likely to contain spurious connections.
Conceivably, a connection between two specific nodes is
more likely to be reliable/real if it is consistently detected
across individuals, and vice versa. We, therefore, con-
trolled for spurious connections at the group level, as did
previously [Gong et al., 2009a]. Specifically, for each node
pair, a nonparametric sign-test was applied by taking each
individual as a sample, with the null hypothesis being that
there is no existing connection (i.e., connectivity
weight 5 0). The Bonferroni method was used to correct
for multiple comparisons across all node pairs within the
network. For each type of WM networks, the node pair
surviving a corrected P< 0.05 was deemed to have a con-
nection. As a result, a binary matrix (1 for node pairs with
a connection and 0 for node pairs without a connection)
was generated for each type of WM networks. This binary
mask was then applied to each individual network to
remove the spurious connections for the subject.

For each type of WM networks, after above masking
process, the density/sparsity of individual networks still
differed. However, the between-subject comparison in
most network topological parameters typically requires the
same network density [Fornito et al., 2013; van Wijk et al.,
2010]. To control for this, we chose the minimum density/
sparsity of networks across the 57 subjects. The individual
network matrices with a higher density/sparsity were
forced to reach the same density/sparsity by removing
connections with the lowest edge weight. For each type of
WM networks, the network density/sparsity became the
same across subjects, improving between-subject compara-
bility of network measures below.

Network Measures

In graph theory, the measure of network efficiency was
proposed to characterize the capacity of information com-
munication within the network [Latora and Marchiori,
2001, 2003]. The related measures have a number of con-
ceptual and technical advantages [Achard and Bullmore,
2007; Rubinov and Sporns, 2010], and are suitable to
quantify complex networks with unconnected nodes that
may exist in our obtained high-resolution WM networks.
We, therefore, chose these measures as the network
measures of interest when assessing individual differen-
ces across network construction methods. Specifically,
nodal efficiency, network global efficiency and local effi-
ciency were calculated for each type of WM networks
using in-house Gretna package (http://www.nitrc.org/
projects/gretna/).
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Nodal Efficiency

Nodal efficiency (Enodal) is a measure that represents the
capacity of a node to communicate with the other nodes of
the network and is defined as follows:

EG
nodalðiÞ ¼

1

N21

X

i6¼j2G

1

Lij
(1)

where Lij is the shortest path length between node i and
node j, and N is the number of nodes of the network G.

Network Global Efficiency

Global efficiency is a global measure of the information
transferring ability in the entire network, which is com-
puted as the mean of nodal efficiency across all nodes of
the network [Latora and Marchiori, 2001]:

EG
glob ¼

1

NðN21Þ
X

i2G

X

j6¼i2G

1

Lij
(2)

where Lij is the shortest path length between nodes i and
j, and N is the number of nodes in the graph G.

Network Local Efficiency

Local efficiency corresponds to the efficiency of informa-
tion flow within the local environment, which reflects the
ability of a network to tolerate faults [Latora and
Marchiori, 2001]. The local efficiency of a network is com-
puted as follows:

EG
loc ¼

1

N

X

i2G

EGi

glob (3)

where Gi is the subgraph composed of the nearest neigh-
bors of node i and the connections among them. Notably,
the nearest neighbors for the Gi were defined only in the
context of graph/networks, without any spatial constrains
in the brain.

Individual Differences of WM Network

Properties

Specifically, individual differences of WM network
properties were analyzed in three aspects: (1) the spatial
pattern of WM connections, (2) the spatial pattern of nodal
efficiency, and (3) the network efficiencies. For a specific
WM network property, two construction methods were
considered as convergent if they exhibited a similar pat-
tern in individual differences; otherwise were considered
as divergent.

Individual Differences in Spatial Pattern of WM
Connections

The spatial pattern of WM connections reflects the edge
distribution within the network, which represents the

most basic information for the network connections. Here,
the Pearson’s correlation of edge weights was computed
across all node pairs between every two subjects, which
can reflect the degree of subject-to-subject similarity in the
spatial pattern of WM connections [Bassett et al., 2011]. A
high correlational value indicates a smaller difference in
the spatial pattern between subjects. All subject-to-subject
correlational values can be formulated as a 57357 symmet-
ric matrix, in which each row and column represents a
subject (in total 57), and element (i, j) is the correlational
value between subject i and subject j. Particularly, the
Pearson’s phi correlation was applied between subjects for
binary WM networks, which is applicable to binary cases
(i.e., “1” or “0”) [Crem�er, 1946]. Figure 2 illustrates the
schematic diagram for estimating subject-to-subject simi-
larity in the spatial pattern of WM connections. Together,
ten 57357 subject-to-subject similarity matrices were gen-
erated, each for a WM network construction method.

For every pair of construction methods, the Pearson cor-
relation of subject-to-subject similarity values was further
applied across all subject pairs, which essentially captures
the pattern similarity of the 57357 subject-to-subject
matrix between methods. Therefore, a 10310 method-to-
method similarity matrix was obtained, which reflected
the degree of convergence of individual differences in the
spatial pattern of WM connections.

Individual Differences in Spatial Pattern of Nodal

Efficiency

The spatial pattern of nodal efficiency represents the
nodal efficiency distribution within the network, which is
essential to identify hub regions within the networks
[Gong et al., 2009b; Hagmann et al., 2008]. Likewise,
subject-to-subject similarity in the spatial pattern of nodal
efficiency was estimated by the Pearson correlation across
either 90 (low-resolution) or 1,024 (high-resolution) nodes
within the network, which yielded another
ten 57357 symmetric matrices (Fig. 3). Furthermore, by
applying the Pearson correlation to the subject-to-subject
similarity values across all subject pairs, a 10310 method-
to-method similarity matrix was also generated, which
represented the degree of convergence of individual differ-
ences in the spatial pattern of nodal efficiency.

Individual Differences in Network Efficiencies

For network global and local efficiency, only one num-
ber is given to each network. Therefore, the subject-to-
subject similarity could not be computed. The method-to-
method similarity of the individual difference pattern was
directly measured by computing the Pearson correlation of
the efficiency values across all subjects. Here, a high corre-
lational value indicates convergent individual differences
of network efficiencies between methods. Likewise, we
ended up with a 10310 method-to-method similarity
matrix for network global and local efficiency.
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Differences of Subject-to-Subject Similarity

Across Methods

For the spatial pattern of both WM connections and
nodal efficiency, we statistically compared subject-to-
subject correlation values (i.e., R-values) between the 10
construction methods. Notably, the degree of freedom for
the R-values differed between low-resolution and high-
resolution networks. Therefore, we separately applied a
one-way repeated-measure ANOVA at each resolution.
Prior to statistical comparison, the R-values were first con-
verted to Z-values using Fisher’s r-to-z transformation.

Clustering Analysis of Network Construction

Methods

To identify the convergence and divergence of individ-
ual difference pattern between network construction

methods, we applied hierarchical clustering analysis to the

four method-to-method similarity matrices. The results can

be represented by a tree structure (referred to as a dendro-

gram), straightforwardly showing the clusters of construc-

tion methods at each hierarchical level. Here, the method-

to-method similarity matrices were first converted to dis-

tance matrices (i.e., 1-similarty matrix), representing the

degree of difference between methods. The widely used

average linkage agglomerative algorithm was then applied

to each distance matrix, respectively [Legendre and

Legendre, 1983]. Specifically, this bottom-up clustering

algorithm treated each construction method as a cluster at

the beginning, and then merged the two clusters with the

minimum distance into a new cluster. This procedure was

iterated until only one cluster was reached. During each

step, the distance between two clusters was defined as the

average distance between members of the two clusters.

Figure 2.

The schematic diagram for estimating subject-to-subject similar-

ity in the spatial pattern of WM connections. (A) The WM net-

works of all subjects for a specific type of construction

methods. The fiber-density weighted networks at low-resolution

are displayed here as an example. (B) The WM connectivity

matrix for all node pairs across all subjects. Each row and col-

umn represents a node pair and a subject, respectively. (C) The

subject-to-subject matrix representing between-subject similarity

in the spatial pattern of WM connections. Each row and column

represents a subject. The color represents Pearson correlation

R-values. (D) The scatter plot for the subject-to-subject Pearson

correlation of connection weight. Here, the 40th and 50th sub-

jects [marked out in (B) and (C)] were chosen as an example,

and each circle represents a node pair. [Color figure can be

viewed in the online issue, which is available at wileyonline

library.com.]

r Individual Difference of WM Networks r

r 2001 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


Test–Retest Reproducibility

We reran the above analyses with the second scans for
all subjects and further assessed the cross-session reprodu-
cibility for the patterns of individual differences as well as
for the convergence of network construction methods. For
each construction method, we first evaluated the reprodu-
cibility of the 57357 subject-to-subject similarity matrices
for the spatial pattern of both WM connections and nodal
efficiency. Specifically, for each method, we tested the
Pearson correlation of all elements within the 57357
matrix between the two scans. Similarly, the reproducibil-
ity of the 10310 method-to-method similarity matrix for
each WM network measure was tested by correlating all
elements within the 10310 matrix between the two scans.
In addition, we computed intraclass correlation coefficient
(ICC) and coefficient of variation (CV) of the subject-to-
subject similarities for the spatial pattern of both WM con-
nections and nodal efficiency, and ICC and CV of the
method-to-method similarities for each WM network mea-
sure [Bassett et al., 2011; Lachin, 2004]. Notably, there are
multiple variants of ICC, and we used the version that

was defined by a recent test-retest study [Zuo et al., 2010].
Finally, the hierarchical clustering results were compared
between the two sessions.

RESULTS

For each subject, we have built 10 different WM networks
that involved two node definitions (i.e., L-90 and H-1024)
and five edge definitions (i.e., binary, FA weighted, fiber-
density weighted, length-corrected fiber-density weighted,
and connectivity-probability weighted), as illustrated in
Figure 1. These obtained WM networks exhibited very simi-
lar patterns with previously reported networks. The PT-
based networks had more connections compared with the
DT-based networks; and the high-resolution networks
showed a more sparsity than the low-resolution ones.

Spatial Pattern of WM Connections

The 57357 subject-to-subject similarity matrix for each
WM network was illustrated in Figure 4A, in which each

Figure 3.

The schematic diagram for estimating subject-to-subject similar-

ity in the spatial pattern of nodal efficiency. (A) The distribution

of nodal efficiency of all subjects for a specific type of construc-

tion methods. Furthermore, the fiber-density weighted networks

at low-resolution are displayed here. (B) The nodal efficiency

matrix for all nodes across all subjects. Each row and column

represents a node and a subject, respectively. (C) The subject-

to-subject matrix representing between-subject similarity in the

spatial pattern of nodal efficiency. Each row and column repre-

sents a subject. The color represents Pearson correlation R-

values. (D) The scatter plot for the subject-to-subject Pearson

correlation of connection weight. Again, the 40th and 50th sub-

jects [marked out in (B) and (C)] were chosen as an example

and each circle represents a node. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4.

The method effects on individual differences in the spatial pat-

tern of WM connections. (A) The 10 subject-to-subject similar-

ity matrices for WM network construction methods. (B) The

statistics of subject-to-subject similarity values for each method.

The Pearson correlation R-values were first converted to Z-

scores. According to the repeated-measure ANOVA, significant

differences were found across WM networks at low-resolution

and high-resolution. (C) The similarity matrix representing

method-to-method convergence of individual differences in the

spatial pattern of WM connections. Each row and column repre-

sents a network construction method. The row and column

were reordered to better visualize the clusters, which are

marked by diagonal rectangles in red. (D) The hierarchical clus-

tering dendrogram for construction methods. The lines are col-

ored in terms of the clusters in (C). [Color figure can be

viewed in the online issue, which is available at wileyonline

library.com.]
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element represents between-subject similarity in the spatial
pattern of WM connections. According to visual inspection,
the four DT-based low-resolution networks consistently
showed relatively high values compared with the high-
resolution networks. The one-way repeated-measure
ANOVA revealed a significant method difference in
subject-to-subject similarity values at both low-resolution
(P< 0.0001) and high-resolution (P< 0.0001; Fig. 4B). In
terms of the mean subject-to-subject similarity, the descend-
ing order is CP-N>B-N> FD-N>LFD-N>FA-N for the
low-resolution networks and CP-N>B-N>FA-N>LFD-N
>FD-N for the high-resolution networks. Notably, the CP-N
exhibited the highest mean subject-to-subject similarity at
both low-resolution and high-resolution. Furthermore, the
LSD post hoc test (i.e., the least significant difference test)
found significant differences (P< 0.05) between every two
adjacent networks in this order, except for FD-N versus
LFD-N (P 5 0.98) at low-resolution.

The 10310 matrix of between-method similarity was
generated based on the subject-to-subject similarity. In
total, 45 method pairs were examined, which can be fur-
ther divided into three types: (1) within low-resolution (10
in total, method-to-method similarity mean 5 0.20,
std 5 0.19); (2) within high-resolution (10 in total, mean-
5 0.35, std 5 0.14); (3) between low-resolution and high-
resolution (25 in total, mean 5 0.16, std 5 0.15). The
between-method similarity within high-resolution was sig-
nificantly higher than between low-resolution and high-
resolution (t-test, P 5 0.0016) and showed a significant
higher trend than within low-resolution (P 5 0.056). The
within low-resolution and between low-resolution and
high-resolution types did not significantly differ (P 5 0.63).

Hierarchical clustering was applied to identify conver-
gence/divergence between the 10 construction methods.
The row and column of the 10310 method-to-method sim-
ilarity matrix was reordered for a better visualization of
the clusters, and the hierarchical clustering dendrogram
was illustrated (Fig. 4C,D). Clearly, the five high-
resolution WM networks can be grouped into a large clus-
ter. Conceivably, the methods belonging to the same clus-
ter have convergent individual difference patterns in the
spatial pattern of WM connections. However, these meth-
ods are divergent with the methods outside of the cluster.

Spatial Pattern of Nodal Efficiency

Figure 5A illustrated the 57357 subject-to-subject matri-
ces, which characterize the between-subject similarity in the
spatial pattern of nodal efficiency. Visual inspection also
suggested relatively high similarity values for the four DT-
based low-resolution networks compared with the high-
resolution networks. According to one-way repeated-mea-
sure ANOVA, the methods significantly differed at both
low-resolution (P< 0.0001) and high-resolution (P< 0.0001;
Fig. 5B). The descending order is B-N> FA-N>LFD-
N>CP-N> FD-N for the low-resolution networks and

CP-N>B-N>LFD-N> FA-N>FD-N for the high-
resolution networks. The LSD test further revealed signifi-
cant differences between every two adjacent networks in
this order, except for FA-N versus LFD-N (P 5 0.13) at low-
resolution.

Using the subject-to-subject similarity of the spatial pattern
of nodal efficiency, the between-method similarity was also
computed in a pairwise manner (within low-resolution:
mean 5 0.26, std 5 0.17; within high-resolution: mean 5 0.20,
std 5 0.14; between low-resolution and high-resolution: mean-
5 0.09, std 5 0.16). Statistical comparisons indicated a signifi-
cantly lower between-method similarity of between low-
resolution and high-resolution than within low-resolution
(P 5 0.008), but no significant difference between within high-
resolution and both within low-resolution (P 5 0.40) and
between low-resolution and high-resolution (P 5 0.06).

The reordered 10310 method-to-method similarity matrix
and the dendrogram from the hierarchical clustering of
methods are demonstrated in Figure 5C,D. The matrix
shows three obvious clusters. The first consisted of the four
DT-based high-resolution networks, the second was formed
by the four DT-based networks at low-resolution, and the
other one was composed of the two PT-based networks. At
the highest level of the hierarchy, the 10 methods were
largely divided into higher-resolution and lower-resolution,
with the exception of the low-resolution CP-N being
grouped into the high-resolution family.

Network Global Efficiency and Local Efficiency

The individual values of network local and global effi-
ciency were plotted for each WM network (Fig. 6).
Expectedly, the exact values from different network con-
struction methods differed significantly [Zalesky et al.,
2010], but the subject courses of the values may exhibit a
degree of similarity in shape, which suggested a conver-
gent pattern of individual differences. The reordered 103

10 matrix of between-method similarity and the hierarchi-
cal clustering dendrogram are illustrated in Figure 6.
Intriguingly, the low-resolution and high-resolution net-
works of FA-N, LFD-N and CP-N were clustered together
at the lowest level of the hierarchy, which suggested that
individual differences in global and local efficiency were
preserved across network resolutions.

Test–Retest Reproducibility

To assess the reproducibility, we tested correlations of
the elements within each 57357 subject-to-subject similar-
ity matrix or 10310 method-to-method similarity matrix
between the two scans, respectively. For each WM net-
work construction method, the subject-to-subject similarity
in the spatial pattern of WM connections and nodal effi-
ciency was significantly correlated (at least P< 0.001)
between the two scans (Fig. 7), which indicated an accept-
able reproducibility for the subject-to-subject similarity. As

r Zhong et al. r

r 2004 r



Figure 5.

The method effects on individual differences in the spatial pat-

tern of nodal efficiency. (A) The 10 subject-to-subject similarity

matrices for WM network construction methods. (B) The sta-

tistics of subject-to-subject similarity values for each method.

The Pearson correlation R-values were first converted to Z-

scores. Significant differences were observed across WM net-

works at low-resolution and high-resolution. (C) The similarity

matrix representing method-to-method convergence of individ-

ual differences in the spatial pattern of nodal efficiency. Each

row and column represents a network construction method.

The clusters are marked by diagonal rectangles in purple, red,

and green. (D) The hierarchical clustering dendrogram for meth-

ods. The lines are colored in terms of the clusters in (C).

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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shown in Figure 8A, the four types of method-to-method
similarity were also significantly correlated (at least
P< 0.001).

The ICC and CV values for the subject-to-subject simi-
larity in the spatial pattern of WM connections and nodal
efficiency were listed in Table I. Specifically, the ICC val-
ues for the subject-to-subject similarity differed greatly
across network types, with the CP-N showing the highest
values. In contrast, all network types consistently exhibited
a low CV value for the subject-to-subject similarity (the
spatial pattern of WM connections, mean 5 1.6%,
std 5 0.94%; the spatial pattern of nodal efficiency, mean-
5 6.7%, std 5 2.6%). For the between-method similarity,
the ICC and CV values were listed in Table II. The ICC
values were quite high for all network measures (mean-
5 0.91, std 5 0.035), but the CV values differed greatly
across network measures, with the spatial pattern of WM
connection showing the lowest (CV 5 27%) and the net-
work global efficiency showing the highest (CV 5 113.7%).

Finally, the clustering results from the second scan were
highly consistent with the one from the first scan, irrespec-
tive of the type of method-to-method matrix (Fig. 8B).

DISCUSSION

By studying 10 different construction methods for WM
networks, our present study demonstrated a substantial
influence of the construction method on individual differ-
ences of specific WM network properties (e.g., the spatial
pattern of WM connections, the spatial pattern of nodal
efficiency, and network global efficiency and local effi-
ciency). Our analysis revealed that a subset of network
construction methods shared convergent patterns of indi-
vidual differences, which contrasted other construction
methods. More importantly, distinct network properties
exhibited a convergent pattern of individual differences
among specific sets of construction methods, which

Figure 6.

The method effects on individual differences in network global

efficiency and local efficiency. (A) The subject course of local

efficiency for the 10 WM networks. (B) The similarity matrix

representing method-to-method convergence of individual differ-

ences in local efficiency. The obvious clusters are marked by

diagonal rectangles in purple, red, and green. (C) The hierarchi-

cal clustering dendrogram for methods in terms of local effi-

ciency. The lines are colored in purple, red, and green to match

the clusters. (D) The subject course of global efficiency for the

10 WM networks. (E) The similarity matrix representing

method-to-method convergence of individual differences in

global efficiency. (F) The hierarchical clustering dendrogram for

methods in terms of global efficiency. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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Figure 7.

The test–retest reproducibility for subject-to-subject similarity values. (A) The results of two

sessions for the spatial pattern of WM connections. (B) The results for the spatial pattern of

nodal efficiency. In the scatter plots, the horizontal and vertical axes represent the first and sec-

ond session, respectively. Each circle denotes a subject pair. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

http://wileyonlinelibrary.com


indicated that the method convergence depended on the
network measures of interest.

To date, a number of studies have investigated individ-
ual differences (e.g., group comparison and correlational
analysis) of human brain WM networks by using diffusion
MRI, but with diverse network construction methods (i.e.,
node/edge definition) [Meskaldji et al., 2013]. For instance,
network nodes have been defined at either low-resolution
(�100 nodes) or high-resolution (�1,000 nodes), and net-
work edges have been weighted differently such as binar-
ization, FA, and fiber number. While a few studies have
exclusively investigated method influences on specific net-
work properties for the same subjects as well as their test–
retest reproducibility [Bassett et al., 2011; Bastiani et al.,
2012; Buchanan et al., 2014; Cheng et al., 2012a; Li et al.,
2012; Zalesky et al., 2010], the method influences on indi-

vidual differences remain largely unexplored. To our
knowledge, this study was the first one to systematically
assess method effects on individual differences, and there-
fore, may provide valuable implications for cross-sectional
WM network studies.

Effects of Node Definition on Individual

Differences

For all WM networks, the subject-to-subject similarity
values (i.e., R-values) for the spatial pattern of WM con-
nections and nodal efficiency were sufficiently high to
reach the significance level (P< 0.05), which indicated a
substantial similarity between subjects. Compatibly, the
individual spatial patterns of nodal efficiency of WM

Figure 8.

The test–retest reproducibility for method-to-method similarity

values and hierarchical clustering. (A) The method-to-method

similarity matrices of two sessions for all network properties.

For the scatter plots, the horizontal and vertical axes represent

the first and second session, respectively. Each circle denotes a

method pair. (B) The method dendrogram of two sessions for

all network properties. The same network property was

arranged in the same row for (A) and (B). [Color figure can be

viewed in the online issue, which is available at wileyonline

library.com.]

r Zhong et al. r

r 2008 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


networks have shown a high degree of similarity, which
consistently suggests a structural core around medial pos-
terior parietal areas across different subjects [Hagmann
et al., 2008]. Our currently obtained WM networks also
showed relatively high nodal efficiencies around medial
posterior parietal regions, providing further support for
this finding. Notably, the WM networks at low-resolution
exhibited higher subject-to-subject similarity values overall
than the ones at high-resolution in terms of the spatial pat-
tern of either WM connections or nodal efficiency. This
phenomenon is somewhat expected because the between-
subject variations are always more numerous at the finer
scale, for example, high-resolution networks. However, the
lower subject-to-subject similarity values at high-resolution
than the low-resolution might be related to the much
higher degree of freedom when computing the Pearson
correlation, which naturally leads to a lower correlational
value.

Intriguingly, the method clustering analysis in terms of
network global efficiency and local efficiency indicated
that the low-resolution and high-resolution networks for
most edge definitions were consistently grouped together,
which suggested highly convergent patterns of individual
differences for network efficiencies across network resolu-
tions. This finding was supported by previous studies in
which both low-resolution and high-resolution WM net-
works were analyzed. For example, the network global
efficiency and clustering coefficient (corresponding to the
network local efficiency) consistently showed a significant
correlation with the developmental age for both low-
resolution and high-resolution WM networks [Hagmann
et al., 2010]. In addition, both low-resolution and high-
resolution WM networks exhibited a significant group dif-
ference in the clustering coefficient between migraine
patients and controls [Liu et al., 2013]. These results
strongly supported a preservation of individual differences
in network efficiencies across network resolutions.

Effects of Edge Definition on Individual

Differences

In our current study, both DT and PT were applied to
define network edges. Theoretically, the PT is advanta-
geous because it has taken into account the uncertainty of
fiber orientation estimation and fiber-crossing issues
[Bastiani et al., 2012; Behrens et al., 2007]. Strikingly, in
terms of the spatial pattern of WM connections and nodal
efficiency, PT-based networks showed much higher
subject-to-subject similarity than DT-based networks,
except for the spatial pattern of nodal efficiency at low-
resolution. This finding may relate to the large number of
tracking sampling in PT, which likely lowers the between-
subject variations in presence/absence patterns of WM
connections.

While the spatial pattern of WM connections and nodal
efficiency at the same resolution showed convergent indi-
vidual differences, the patterns of network global and local
efficiency were largely divergent across edge definitions.
In line with this, a few cross-sectional studies investigating
binary, FA-weighted, or fiber-density weighted WM net-
works in the same study have shown discrepant compara-
tive or correlational results for either global efficiency or
local efficiency between different weighted networks
[Batalle et al., 2012; Li et al., 2009]. Also, discrepant results
on network efficiency were observed between studies that
investigated similar group comparisons. For example,
Zalesky et al. [2011] found significant changes of efficien-
cies of binary networks (i.e., path length and clustering
coefficient) in schizophrenia patients, as compared with
controls. In contrast, another schizophrenia study reported
no differences of network efficiencies between patients
and controls, using FA-weighted networks [van den
Heuvel et al., 2010]. Given the divergent patterns of indi-
vidual differences of network efficiency, some previously
contradictory findings in group comparison or correla-
tional analyses across studies may be attributed to the dif-
ferences of edge definition.

Notably, the edge definition from DT was based on dif-
fusion tensor model. While this model is very robust to
noise and still represents the most widely used method in
diffusion MRI applications, it has a limited capacity for
resolving crossing fibers. This may result in the loss of
some existing fibers and hence miss some connections (i.e.,

TABLE I. The ICC/CV for the subject-to-subject similar-

ity of the spatial pattern

WM connections Nodal Efficiency

ICC CV(%) ICC CV(%)

B-N(L) 0.22 1.94 0.54 6.40
B-N(H) 0.16 1.10 0.55 5.09
FA-N(L) 0.57 2.02 0.59 4.59
FA-N(H) 0.71 1.21 0.57 8.72
FD-N(L) 0.63 2.30 0.65 10.59
FD-N(H) 0.67 2.20 0.60 9.24
LFD-N(L) 0.54 3.21 0.57 6.05
LFD-N(H) 0.60 1.79 0.62 6.87
CP-N(L) 0.78 0.27 0.68 7.75
CP-N(H) 0.88 0.20 0.70 1.65

ICC, intraclass correlation coefficient; CV, coefficient of variation.

TABLE II. The ICC/CV for the method-to-method

similarity

ICC CV(%)

Spatial pattern of WM connections 0.94 27.45
Spatial pattern of nodal efficiency 0.88 62.53
Network local efficiency 0.87 102.25
Network global efficiency 0.93 113.74

ICC, intraclass correlation coefficient; CV, coefficient of variation.
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false negative) for our reconstructed WM networks. In
addition, the inability to characterize crossing-fiber situa-
tions has an impact on the tensor-derived FA values (i.e.,
edge definition 2): the fiber-crossing regions typically have
very low FA values. This may separately influence the
individual differences of the FA-weighted network in our
study, ultimately affecting the similarities between the FA-
weighted network and the other types of network. To
address the fiber-crossing issue, complex diffusion models
can be estimated using more sophisticated methods such
as constraint spherical deconvolution [Tournier et al., 2007;
Tournier et al., 2004] and Q-ball imaging [Tuch et al.,
2003]. However, our current diffusion MRI acquisition
does not allow for fitting these complex models. Future
studies with more sophisticated diffusion models or diffu-
sion imaging techniques, as well as finer imaging resolu-
tion or quality, are warranted to replicate our current
findings.

Measure-Specific Convergence/Divergence of

Individual Differences Between Methods

The method clustering analysis provides a clue about
the methods that exhibited convergent/divergent patterns
of individual differences. Conceivably, the methods within
the same cluster share convergent individual differences
but less convergent or divergent individual differences
with the methods outside of the cluster. Notably, the clus-
tering results demonstrated that specific network construc-
tion methods may show convergent individual differences,
but they strongly depend on network measures of interest,
and distinct network properties may show convergent
individual differences among different sets of methods.
For example, the low-resolution and high-resolution net-
works for each edge definition were far from being
grouped together according to the individual differences
of the spatial pattern of either WM connections or nodal
efficiency. However, the low-resolution and high-
resolution networks for each edge definition were largely
grouped together in terms of individual differences of net-
work global efficiency and local efficiency, which sug-
gested a convergent individual difference of global and
local efficiency between low-resolution and high-resolution
networks.

The measure-specific convergence/divergence between
methods has important implications for cross-sectional
WM network studies. For example, if one study focuses on
the comparative or correlational analysis of network global
efficiency and local efficiency across subjects or group, the
statistical results are likely similar for WM networks at
low-resolution and high-resolution, which implies less of a
need for analyzing WM networks at multiple resolutions.
However, if the study investigates the spatial pattern of
nodal efficiency across subjects, conducting WM network
analyses at multiple resolutions would be suggested
because different network resolutions provide divergent
subject contrast in the spatial patterns.

Reproducibility

The test–retest reproducibility of WM network proper-
ties has been recently evaluated, consistently suggesting
an acceptable reproducibility for specific WM network
measures (e.g., network global and local efficiency)
[Bassett et al., 2011; Buchanan et al., 2014; Cheng et al.,
2012a; Owen et al., 2013]. Notably, these studies mainly
focused on reproducibility of network measures per se. In
contrast, this study evaluated the reproducibility of the
individual differences of specific network measures. For
the first time, we confirmed that the subject-to-subject sim-
ilarity of the spatial pattern of WM connections and nodal
efficiency are temporally reproducible. More importantly,
our analysis further demonstrated that the between-
method similarity of individual differences and method
clusters were largely preserved across time, which indi-
cated that convergence/divergence between network con-
struction methods is temporally stable. The observed
reproducibility of individual differences in WM network
properties provides further supports for the decent repro-
ducibility of the network properties per se [Bassett et al.,
2011; Buchanan et al., 2014; Cheng et al., 2012a; Owen
et al., 2013].

In line with previous studies showing differences on the
test–retest reproducibility of network properties between
network construction methods [Bassett et al., 2011;
Buchanan et al., 2014], the degree of reproducibility of
individual differences also depends on construction meth-
ods. Compatibly, a few recent studies have demonstrated
the effects of tractography or related analyzing methods
on the reproducibility of individual node–node connec-
tions [Lemkaddem et al., 2014; Smith et al., 2015], possibly
serving as a potential source to the observed method-
dependent reproducibility for the whole-brain network
properties. Notably, the PT-based networks overall exhib-
ited a better test–retest reproducibility for the subject-to-
subject similarity of the spatial pattern of WM connections
and nodal efficiency. In addition, the PT using diffusion
MRI has shown superior abilities to obtain accurate con-
nections [Pestilli et al., 2014]. These compatible findings
therefore provide support in favor of the PT for a wide
range of applications in the future.

Limitations

A few issues need to be addressed. First, while this
study has demonstrated method-dependent individual dif-
ferences for WM networks, we did not intend to provide a
rule of thumb for the choice of network construction meth-
ods that should be largely based on specific question of
interests. Given that differential biological underpinnings
are linked to different network construction choices (par-
ticularly the edge weight definition), the presently
observed differences of intersubject similarity or individual
differences across different network construction methods
are expected to some extent, possibly reflecting inherent
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different levels of inter-subject variability across the differ-
ential biological underpinnings. For rigorous result com-
parisons across studies, identical network construction
methods are therefore recommended. Second, since our
diffusion MRI protocol did not include a field map acqui-
sition, no preprocessing correction was made for EPI sus-
ceptibility distortion [Jones and Cercignani, 2010]. This
may affect our findings to some extent, and therefore,
needs to be addressed in the future. Third, technical
details involved in WM network constructions can affect
the network properties and their reproducibility. For
example, tracking seeding strategies and termination crite-
rion have shown an impact on the reproducibility of
reconstructed tracts [Jones and Pierpaoli, 2005], as well as
on the network topological parameters [Cheng et al.,
2012b; Li et al., 2012]. Network thresholding for discarding
spurious connections or configuring a customized network
density/sparsity can also influence network properties
[Cheng et al., 2012b; Fornito et al., 2013; Li et al., 2012]. In
this study, we simply adopted one of the most common
choices for these details. The effects of these detailed
choices on the patterns of individual differences are
beyond the scope of our current study and warrant sepa-
rate studies in the future. Finally, we only assessed indi-
vidual differences of WM network properties in a cohort
of healthy subjects. Future studies are needed to explore
the method influences on individual differences in disease.
In addition, more investigations are warranted to examine
the construction method influences on individual differen-
ces of other network measures such as the modular struc-
ture and rich-club attributes [Hagmann et al., 2008; van
den Heuvel and Sporns, 2011].

CONCLUSION

Our present study has demonstrated that network
construction methods (e.g., spatial resolution for network
nodes and weighting strategies for network edges) had
a non-negligible impact on the individual differences of
WM networks. In particular, a subset of construction
methods can provide convergent patterns of individual
differences for specific network properties but are diver-
gent with other construction methods. Importantly, the
method convergence/divergence differed among network
properties (e.g., spatial pattern of WM connections and
nodal efficiency, and network global efficiency and local
efficiency). These findings may provide valuable implica-
tions for understanding the intersubject variability of
WM networks and comparing results across different
studies.
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